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ABSTRACT 

The previously noted difficulty of obtaining Dirac 

magnetic moments in composite models is combined with the 

observation that a "light" bound fermion state with a small 

size must have the Dirac moment in a renormalizable theory 

since its anomalous moment is determined by its excitation 

spectrum. New constraints on composite models are given, 

including the "superconfinement" condition that creation of 

virtual electron-positron pairs by the superstrong gluons 

responsible for binding the constituents of the electron must 

be strictly forbidden in photon electron scattering. 
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The difficulty of obtaining the Dirac magnetic moment 1,2 

has been suggested as a crucial test for composite models of 

leptons and quarks. 3 A number of papers 4-7 have subsequently 

argued that the Dirac moment is automatically obtained in any 

model which correctly describes the strong binding and small 

size of the leptons. This paper examines these arguments and 

shows that their conclusions are somewhat misleading for 

model builders. Obtaining the Dirac moment remains a serious 

test for any model because it may be easier to calculate the 

ground state magnetic moment in a given model than to verify 

that it satisfies these conditions assumed in Refs. 4-7. 

The absence of low-mass photo-excitations of the leptons 

is always assumed in the arguments which automatically obtain 

the Dirac moment. Although this is true for the physical 

electron and muon, it may not hold in a composite model under 

consideration. Such models will have to be evaluated by 

incomplete evidence as they can be expected to be even more 

difficult for calculation that QCD. In models where it is 

much easier to calculate the magnetic moment of the ground 

state than to show that there are no low-mass 

photo-excitations, the arguments of Refs. 4-J showing that 

the Dirac magnetic moment is automatically obtained are not 

very useful. 

There is, however, interesting physics in this 

discussion which can be clarified by combining the approaches 

of Refs. 1,2 and Refs. 4,5. The results can be useful to 

model builders by providing intuition, constraints and guide 
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lines. The constraints might enable them to reject 

unsuitable models with a minimum of wasted effect. They 

might also lead to no-go theorems showing that the problem 

cannot be solved either in general or with a wide class of 

models. 

This paper discusses three constraints which must be 

satisfied by any model: 

1. The magnetic moment of the bound state must depend 

only upon the total charge of the system and be independent 

of how the charge is distributed between the constituents. 

2. The excitation of multilepton states in 

photon-lepton scattering must be completely described by QED, 

with no additional contributions observable at present 

energies from the superstrong interactions responsible for 

the binding of the constituents of the leptons. 

3. The composite model for the spin l/2 leptons must 

not have a low mass excitation with spin 3/2 analogous to the 

A in the quark model for the nucleon. 

The nature of the difficulties imposed by these 

constraints is most strikingly illustrated in the following 

simple but extreme example. Consider an electron model as a 

composite of a neutral fermion and a scalar boson with charge 

-e. The naive nonrelativistic model for such a state has 

zero magnetic moment since the charged constituent has no 

angular momentum and the constituent with spin has no charge. 

A Dirac moment is obtained only if the charged boson has just 

the right peculiar value of orbital angular momentum to 
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contribute the exact value of the moment for the combined 

system. 

The argument of Refs. 4,5 suggest that this miracle 

occurs automatically if a light bound state can be 

constructed from a heavy scalar boson and a heavy fermion. 

The essential peculiar feature of the bound state is that the 

scale defined by its size (or the masses of the constituents) 

is much smaller than the scale defined by its Compton wave 

length (or the mass of the bound state). They show that the 

anomalous magnetic moment and the excitation spectrum are 

determined by the scale of the size of the system, whereas 

the Dirac moment is determined by the mass or Compton wave 

length. 

One very remarkable feature of this argument is its 

complete independence of the precise coupling of the 

individual constituents to the electromagnetic field: e.g. 

their electric charges. Thus the magnetic moment of such a 

low mass bound state must be very close to the Dirac moment 

resrdless of ~- the electric.charges.of the constituents. If 

the argument holds for a neutral fermion and a charged boson, 

it must also hold, with the same wave function for the 

composite system, for a charged fermion and a neutral boson, 

or for a fermion with charge xe and a boson with charge 

-(l + x)e, where x can have any arbitrary value. This puts 

extreme conditions on the model, and suggests that any 

composite model made from two different elementary fields 

cannot have a simple description in terms of constituents, 
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like the constituent quark model for hadrons. 

This argument also shows that simple relativistic models 

with the Dirac equation in external potentials cannot 

describe such superstrong binding. Although such 

calculations show that a bound fermion in an external 

potential contributes a magnetic moment corresponding to its 

charge and mass,'-' the result is misleading, since the 

infinitely heavy potential source is assumed to have no 

charge and no spin. If all the charge of the system is on 

the infinitely heavy source and the fermion has no charge, 

the magnetic moment according to this calculation is zero. 

If the source has no charge, but is an infinitely heavy spin 

one boson, the total angular momentum of the system will be 

in the opposite direction to the angular momentum carried by 

the fermion, and the magnetic moment calculated in this way 

will have the wrong sign compared to the Dirac moment for the 

composite system. 

The basic nature of the problem is clarified by 

examining the excitation spectrum for the electron. The 

lowest excited states with the same quantum numbers as the 

electron have a single electron and several electron-positron 

pairs. Simple relativistic models based on the Dirac or 

Bethe-Salpeter equations cannot be expected to describe an 

excitation spectrum which contains only multiparticle 

excitations up to a very high energy. Any model which 

attempts to describe the electron from first principles as a 

bound state of several super-strongly interacting particles 
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must also give a reasonable description of multielectron 

systems. Thus any scattering amplitude in which the electron 

appears as a pole must have branch points at masses of 

(2n+l)me beginning with 3m e' 
The treatments of Refs. 4-7 do not consider these branch 

points and assume that the dominant contribution above the 

electron pole to photon electron scattering in lowest order 

in cL comes from states at very high mass. This effectively 

assumes that narrow bound states exist at a mass many orders 

of magnitude above the masses of millions of open decay 

channels allowed by all known conservation laws. Some 

drastically new type of conservation law is needed to prevent 

the coupling and mixing of such high mass states with 

multiparticle states of an electron and a number of 

charge-conjugate electron position pairs with vacuum quantum 

numbers. Such mixing would introduce unwanted low-mass 

contributions into the dispersion relations and sum rules 

which obtain an anomalous moment having a mass scale 

determined by the masses of the intermediate states coupled 

to an electron and a photon. The neglect of all the 

contributions of all multielectron states in these treatments 

assumes that the superstrong "gluons" which bind the 

constituents into a single electron are somehow forbidden to 

be emitted by an electron and to create electron-positron 

pairs. 
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The problem of obtaining a magnetic moment independent 

of the manner in which the charge is distributed between the 

constituents can be formulated more generally without 

assuming simple constituent models and be stated 

relativistically. Consider a composite model constructed 

from two basic fields, denoted by Y1 and Y2. These may be 

either Bose or fermi fields, but at least one fermi field is 

necessary to make a composite fermion. We assume that the 

electromagnetic current is additive in the two fields, 

J’ = qly;(Yl) + q2$V2), (1) 

where 3 1 and I? 2 are "reduced" currents, depending 

respectively only on Y1 and Y2 _ respectively and the coupling 

constants ql and q2 for each field are factored out. 

The angular momentum carried by each field can be 

defined relativistically by observing the behavior of each 

field separately under rotations. Thus we can define the 

total angular momentum 3 as the sum of the contributions from 

the two fields, 

3 = 3, + 3, . 

The magnetic moment operator for each field can be defined 

separately using the specific form of the electromagnetic 

current. We can thus write the magnetic moment operator for 

the system as 



; = qlcl + s,:,, 

a 

(3) 

+ 

where cl and u2 are reduced magnetic moment operators with 

the coupling constants factored out. 

Let us now assume that a bound state exists, formed from 

these constituent fields Q1 and JI,. The total electric charge 

of this bound state is given by 

Q = <nl>ql+ cn2>q2, (4) 

where n1 and n2 are the "reduced charges" of each field. In 

the simple constituent model these are just the number of 

constituents of type 1 and type 2 in the bound state. In the 

Harari Rishon model, 3 for example, n1 and n2 are the numbers 

of V a nd T particles in the state and take on integral 

values from -3 to +3 for the quarks and leptons. Note that 

the wave function can contain an orbitrary number of 

particle-antiparticle pairs in addition to the n1 of type 1 

and the n 2 of type 2, and may not be eigenfunctions of n1 and 

n2 if charge exchange is possible between the two fields. 

The magnetic moment of this state is given by the expectation 

value of the operator (3) in this state, 

<;> = q 1 <+ + q <; > 2 2 (5) 

Assuming that the state has a well defined angular momentum, 

e.g. J=1/2 for quarks and leptons, Eq. (5) can be rewritten 



';> = ql<;~1+'+q2<i;2*5> <j>/[J(J+l)]. 
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(6) 

From the argument of Refs. (4,5), the magnetic moment 

(6) must be the Dirac moment if the found state has a much 

lower mass than the constituents, independent of the values 

of q1 and 92' The ratio of the magnetic moment (6) to the 

total charge Q must then be independent of Ql and Q2’ This 

gives following condition, 

<; 1 m3>/<n > = <; 1 2*3>/<n >. 2 (7) 

Thus the reduced magnetic moments Gl and c2 carried by 

the two fields in the bound state wave function must satisfy 

the condition (7). This result (7) is a precise quantitative 

constraint which must be satisfied by any model which makes a 

light bound state out of two heavy fields with a 

non-electromagnetic superstrong interaction. 

Note that if <;1*31> and ~5 2*$2> have the same sign, as 

is the case is all simple models, where the magnetic moment 

of a positively charged field is parallel to the direction of 

the angular momentum, then csl*s> and <3,*3> must also have 

the same sign. This means that for J=1/2 the projections of 

51 and 3, in the direction of the total angular momentum are 

parallel and are both less than l/2. This proves that the 

state cannot be an eigenfunction of both J1 and J2 and must 

have components both with J1=J2+1/2 and J1=J2-l/2. 
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The wave function defined in Ref. 2, Eq. (6) satisfies 

these constraints, since it was constructed to give a Dirac 

moment for all values of the charges of the constituents. 

However, as noted there, it can only be achieved with a 

peculiar relation between spin and statistics for the 

fundamental fields. More realistic models, if they exist, 

must have wave functions very different from those of simple 

constituent models: e.g. they could contain additional 

particle-antiparticle pairs with non-trivial angular momenta 

and significant contributions to the magnetic moment. 

One way out of this difficulty is to note that the 

electromagnetic current for a non-relativistic moving bound 

system can be split into two components, one due to its 

center-of-mass motion and the other due to its internal 

degrees of freedom. In non-relativistic physics the 

center-of-mass motion is eliminated by going to the 

center-of-mass system. In the relativistic quantum mechanics 

this is no longer possible. The magnetic moment of a Dirac 

electron which has no internal structure comes from the 

operators describing its motion as a whole. The electron 

might have a composite structure on a very small scale which 

would not affect its motion required by relativistic quantum 

mechanics within a range of its Compton wave length. This 

fits into the picture of Refs. 4-5 in which the Dirac moment 

is always present and the anomalous moment comes from the 

structure. However, it is not obvious that the internal 

motions of a composite electron are separable and completely 
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decoupled from the motions giving rise to the Dirac moment. 

This is equivalent to requiring a complete decoupling of the 

low-lying multiparticle excitations, and may be very 

difficult to prove. 

An alternative way out of this difficulty is to assume 

that electromagnetism plays an important role in the 

superstrong binding force and that therefore the bound state 

wave function depends upon the values of ql and q2. In that 

case the condition (7) does not hold. 

Another difficulty to be faced by composite models for 

the electron is the absence of a low-lying excitation with 

spin 3/2 which can be excited by a photon on the electron, 

like the A is excited from the nucleon. Such a spin 3/Z 

state is expected to arise in many models. Some way must be 

found to get rid of it or to push it up to a very high mass 

if the model is to describe the leptons of the real world. 

In simple constituent models where the electron spin of l/2 

is obtained by coupling several non-trivial constituent spins 

to a total spin of l/2, the spin 3/Z state arises from 

recoupling the constituent spins. In the general two-field 

model described by Eqs. (l-7) the same problem arises even 

though there may not be well defined constituents. Equations 

(2) and (7) show that the angular momenta 3, and 3, carried 

by the two fields are both finite and can therefore be 

coupled to a total angular momentum of 3/2 as well as to l/2. 
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If such a spin 3/Z state exists in a given model, the 

sum rule arguments break down and the anomalous moment is not 

small. This is clear in the case of the nucleon. The N-A 

transition for example gives a large contribution to any sum 

rule for the anomalous moment of the nucleon. In a 

particular model it may be easier to calculate the ground 

state magnetic moment than to prove the absence of a 

low-lying spin 3/Z state. Estimates or bounds on the 

magnetic moment might be obtainable from models with 

approximate ground state wave functions. But if the 

excitation spectrum is exceedingly difficult to calculate, 

particularly for higher spin states, the masses of the lowest 

spin 3/Z excitations may be unknown and the argument of 

Refs. 4,5 completely useless. 

This discussion can be summarized as requiring any 

composite model describing the electron to be 

"superrelativistic" with "superconfined" constituents. 

Super-relativistic goes beyond both nonrelativistic and 

simple relativistic models. A non-relativistic composite 

model is characterized by constituent velocities WCC. 

Relativistic potential models using Dirac or Bethe-Salpeter 

equations are useful when velocities are no longer small, but 

when an excitation spectrum exists with energies smaller than 

the energy required to produce many bound state pairs. The 

composite model needed to describe the electron can be called 

superrelativistic because it must have a rich low-lying 

spectrum of multiparticle states. Models where it is much 
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easier to create many pairs than to excite the original 

constituents to a radial or orbital excitation cannot be 

described in any simple way by potential models. 

Superconfinement goes beyond the ordinary confinement of 

QCD. Quarks in QCD are not observable as free particles, but 

are observable as hadrons jets produced in collisions, are 

emitted in pairs in hadron decays by interactions arising 

from QCD gluons, and give rise to forces and scattering 

between hadrons resulting from quark or gluon exchange. If 

leptons are composites of constituents bound by some 

superstrong gauge field, these constituents are confined much 

more than in the sense of QCD. There must not be any 

observable effects in lepton-lepton and lepton-photon 

scattering which reveal the existence of additional 

interactions beyond QED. There can be no lepton jets 

produced by deep inelastic photon absorption on a charged 

constituent of the electron, and no observable 

electron-electron interactions resulting from superstrong 

gluon or constituent exchange. The superstrong interactions 

which bind the constituents of the electron must not only 

confine the constituents from being observed as free 

particles. They must also confine all the secondary effects 

of these superstrong interactions normally observed in QCD. 

Such a superrelativistic superconfined system will 

naturally have the Dirac magnetic moment to a very good 

approximation. The Dirac moment is obtained from the 

electromagnetic current density due to the motion of the 
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entire bound system. If all effects of the composite 

structure are superconfined, the anomalous moment must be 

very small with a mass scale determined by the excitation 

energy of the composite structure. But superconfinement will 

undoubtedly be harder to tests and prove in any proposed 

model than confinement in QCD. Thus magnetic moment 

calculations may prove to be highly significant test of such 

models. 

Stimulating discussions with J.D. Bjorken, F. Coester 
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